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Overview

This case study presents the application of
predictive analytics in the healthcare sector
with the aim of improving patient care quality
and supporting efficient hospital operations.
The focus is on using analytical insights to
identify patient risk patterns and assist
healthcare providers in making timely,

informed decisions.

By adopting a predictive approach, healthcare
systems can move beyond reactive treatment
methods and toward proactive care planning.
The study highlights how data-driven insights
can contribute to better clinical outcomes while
also addressing operational challenges such as

resource utilization and hospital congestion.
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Problem

Statement

The key problems addressed in this case study include:

o Inefficient utilization of hospital resources such as beds, medical
staff, and equipment

o Difficulty in identifying high-risk patients at an early stage

e Delayed clinical decision-making due to limited predictive support

e Increased operational pressure caused by unplanned patient inflow

e Lack of proactive insights to support effective treatment planning
and hospital management

These challenges highlight the need for analytical solutions that enable

carly risk identification and informed, proactive decision-making.
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Methodology

o Healthcare-related records were consolidated and organized to

create a unified analytical view.

o Data preprocessing steps were applied to handle missing values,
standardize formats, and prepare features suitable for analysis.

o Exploratory data analysis was performed to understand patient
distributions, encounter patterns, and health-related trends.

e Key indicators representing patient condition and historical
patterns were identified to support predictive analysis.

e A supervised classification model was developed to assess
patient risk levels and health outcomes.

e The generated predictions provided actionable insights to
support timely treatment planning and informed resource

management.




Key Insights ] [k

The analysis provided several important insights that support both clinical

decision-making and hospital operations.

Clear patterns emerged that help differentiate patients based on their
overall risk levels, enabling early attention for those requiring closer
monitoring.

Historical health indicators and encounter patterns played a
significant role in understanding patient condition trends over time.
Predictive assessment supports timely treatment planning by
highlighting potential risks before conditions escalate.

Analytical insights help hospitals anticipate patient demand more
effectively, supporting better planning of beds, staff, and resources.
Data-driven visibility into patient health trends enables a shift from

reactive responses to proactive healthcare management.

Comorbidity Analysis: Multiple Chronic Conditions

Number of Patients
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Comorbidity Analysis: Risk levels rise sharply with the number of chronic conditions;

patients with multiple conditions are predominantly categorized as high-risk.
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Vital Signs Comparison: Low Risk vs High Risk Patients
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Hospital Visits Distribution by Risk Level
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Hospital Visits Distribution: High-risk patients exhibit a higher frequency

of encounters, with many recording between 15 and 25 visits.
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HEALTHCARE PREDICTIVE ANALYTICS - DASHBOARD OVERVIEW
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The dashboard provides a unified view of 98 patients , revealing that high-risk status (46.9%) is primarily driven by

advanced age , frequent hospital visits , and multiple chronic conditions , rather than BMI or blood pressure alone.
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Confusion Matrix - Logistic Regression Disease Prevalence by Risk Level (%)
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Confusion Matrix (Logistic Regression):
The model shows high precision, accurately
predicting 11 out of 11 high-risk patients and
misclassifying only 1 low-risk patient.

Age Distribution by Risk Level Feature Correlation Matrix
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Feature Correlation Matrix: Identifies strong
inter-relationships  between Age, BMI, and
Glucose, which serve as the primary predictive
features for the classification model

Age vs Health Metrics (Color-coded by Risk)
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